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Primary sequences of proteinlike copolymers: Levy-flighttype long-range correlations
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We consider the statistical properties of primary sequences of twoéReropolymers H for hydrophobic
andP for polarn designed to have water soluble globular conformations Withonomers shielded from water
inside the shell oP monomers. We show, both by computer simulations and by exact analytical calculation,
that for large globules and flexible polymers such sequences exhibit long-range correlations which can be
described by Levy-flight statistics.
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In Refs.[1,2], a new approach to the design of specific quences. We choose the “window” of length, move it
primary sequences for th¢P-copolymers consisting of mo- step by step along the generatd®-sequence, and at each
nomeric units of two typeshydrophobic,H and polar,P) step count the number d¢f units inside the window. This
has been proposed by some of the present authors. Unlikmimber, which we write a§i':j/ui is a random variable,
some other methods of sequence design known in the literatepending on the positiop of the window along the se-
ture (see review 3] and references thergirthe approach in  quence; here; is the variable associated with every mono-
question does not aim to mimic folding into one particularmeri, such thau;=1 if monomeri is H andu;=0 if it is P.
conformation. The goal is to model simpler and more robustrhis random variable has certain distribution. Its average is
property of proteins, such as their ability to stay dissolveddetermined by the overall sequence compositiotal num-
and shield their hydrophobic monomers from water. The esbers of H- and P-monomery, and its dispersion is easy to
sence of this approach is illustrated in Fig. 1. We start withcalculate:
an arbitrary computer-generated globular conformation of a
homopolymer chairiformed due to the strong attraction of )
monomer units, Fig. ®] and perform a “coloring” proce- D/:iZ«k ((uiup) = {up)(up)). 1)
dure: monomer units in the core of the glob(i@ving many !
neighborg are set to beH-units while monomer units be- For a completely randontd P-sequence, the value d,
longing to a globular surfadevhere the number of neighbors scales as”*? with the window width/. The dependence
is smalley are assigned to be &*type, Fig. 1b). Then the D, ~/« with «>1/2 would then manifest the existence of
obtained primary sequence is fixed, uniform attraction ofiong-range correlations.
monomer units is removed and newly generated The result of such calculation for averaging over 2000
HP-copolymer is ready for the further investigatipRig.  independent proteinlikéiP-sequences oN=1024 mono-
1(c)]. Thus, obtained macromolecules am®teinlikein the  mer units with 1:1 compositiofobtained as in Ref2]) is
sense that they mimic segregation of globule into hydrophopresented by the squares in Fig. 2. For comparison, the data
bic core and stabilizing hydrophilic envelope. The propertiesor two other types of sequencésveraged over 2000 inde-
of proteinlike copolymers were examined in Ref5,2,4,9;  pendent specig¢sare also shown. One of them is a purely
see also Refd.6,7] for possible ways of experimental real- random 1:1 sequence; it demonstra@s~ /2 scaling.
ization. Comparing this curve with Monte Carlo results we see im-

In this Rapid Communication, we address correlations bemediately that the proteinlike sequence is not random and
tweenH- and P-units along the proteinlike sequences. Thissome correlations do exist in it. Thus, it is interesting to
may shed light on the conditions which must be met by thecompare the squares in Fig. 2 and the dashed curve showing
sequence to provide for the water solubility of globules, thedata for the sequence which was called “random-block” in
issue of great potential relevance to our understanding oRefs.[1,2,4,5: the lengths oH- andP-blocks in a sequence
statistics.

early evolution. We show, both by computer simulations and

by exact analytical calculation, that correlations have a long= . b ¢

range character. More specifically, for the simple model of £8828% m i

flexible polymer, they belong to the so-called Levy-flight ‘;.;.' .!i‘éit? %:g ‘mﬁ”‘?’j‘;
To begin with, statistical properties of proteinlike oo o

HP-sequences can be assessed computationally by the FIG. 1. Sequence design scheme for proteinlike copolyntars:

method similar to that used by Stanley and co-work8r8]  homopolymer globule(b) the same globule after the coloring pro-

in their search for long-range correlations in DNA se-cedure;(c) proteinlike copolymer in the coil state.

k+/
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2,0 . - - - . sphere of radiufR* <R, such that all the units which in the
parent conformation are confined inside this sphere are of the
H-type and the units belonging to the shell lagr<r <R

are of theP-type. Therefore, the homocolored section is pro-
duced in our model by the chain section of the parent con-

= Monte Carlo
1,5F " random
| —-—--random-block

~ Lo ] formation placed entirely in either internal or shell regions of
eé the globule. The probability to have an uninterrupted succes-
D051 . sion of somek of H-monomer units in the sequence is equal
- to the probability that the Gaussiddue to Flory theorem
ool | polymer has a loop ok monomer units entirely confined in
’ ! the H-region with ends on the separation surface. Similarly,
00 05 10 15 20 25 30 the probability to have an uninterrupted succession of some

log,, (£) of P-monomer units in the sequence is equal to the probabil-
ity that ideal parental conformation has a loopgkahonomer
FIG. 2. Dispersion of the number &f-units in the fragment of ~ units confined within the sheR-region, again with ends on
sequence of size’ for the proteinlikeH P-sequence, random co- the separation surface.
polymer and random-block copolymer. Results of analytical theory To address probability distributiori®, (k) andPp(k), we
for proteinlike sequence are shown for both continuous approximabegin with simple physical arguments yielding
tion (thick solid line and for discrete approximatiofthin solid
line) [see explanation around Ed.1)]. Corresponding Monte Carlo _ap ( H P) 2
results are presented by squares. There is no adjustable parameters k™%, 1<k<|——];
. . i . : : a
involved in the fit, length scal@a is uniquely determined by the Py p(k)=
geometry of the bond fluctuation moddi3]. '

2

3 2
e MK k>(M) .
a

( dH,P
are determined by the Poisson distributions adjusted to
achieve the same 1:1 composition and the same “degree dihe upper asymptotic form is valid for short polymer loops,
blockiness” (average block lengthas for a proteinlike ~When neither curvature of the separating boundary nor over-
HP-copolymer. This sequence exhibits a somewhat mor&ll globule shape play any role. In this regini&(k) is sim-
rapid variation ofD, at small/, but ultimately the lanD,  Ply the probability for a random walk to start at the planar
~ /Y2 is obeyed for large values of. Nevertheless, this wall and to return to it for the first time aftérsteps. This is
random-block model is also seen to be unsatisfactory for th@ classical probabilistic “first return” problem, for which the
statistical behavior of a proteinlike sequence throughout the-k~ ¥ answer is well knowri12]. This scaling is valid for
interval of / examined, 2 /<500. Although the data do loop sizesa\k much larger than unity but smaller than the
not fit accurately to any power laly ,~ /¢, the slope of the relevant characteristic length scatg;=R* for the H-loops
observedD, dependence corresponds to significantly  inside the inner sphere, dip.=R—R* for the P-loops in the
larger than 1/2, up to about 0.85, thus indicating pronouncegpherical shell. The second asymptotic form in E).indi-
long-range correlations in a proteinlike sequence. In whagates that for long polymer loops the functi®fk) decays
follows we present an analytical theory which producesexponentially. It is easier to explain this in terms of polymer
curveD , in Fig. 2 in complete agreement with observations.statistics: to confine a polymer chainlomonomer units in a

First of all, let us turn to the origin of long-range correla- cavity costs some entrop¥S, ata\k>d this entropy goes
tions in the primary sequences fidiP-copolymers generated linearly with k, making the probability, exgS), exponential
via the procedure illustrated in Fig. 1. Conceptually, thisin k.
problem is fairly easy to address: since sequence in this Let us now look closer at the cross-over valueskofn
scheme is uniquely determined by the parent conformatiorprder to achieve the 1:1 compositioRF must be chosen
the statistics of sequences reflects nothing but the statistics fich that volumes of intern&d- and shellP-regions are the
parent conformations, which, in turn, is well understood. In-same, which meari®* =2"R~0.8R. The volume fraction
deed, the coloring procedufé&ig. 1(b)] operates in dense of polymer units in a globuleg, is controlled by the energy
globular conformation. Since we consider very compact parof interactions of monomer units used to prepare parental
ent conformations, the statistics of polymer chain conformaconformation. It is clear thaR~0.6aNY3¢ . Therefore,
tions inside the globule is ideéaGaussiapaccording to the H-loops remain in the power law long-range correlation re-
well-known Flory theorenj10]. Therefore, all the statistical gime up to the lengtk<0.24N%3¢ 2, while for P-loops this
properties of parental conformations, including the correlacross-over occurs somewhat earlier: 0.013N%3¢ 2. Thus,
tions in the primary sequences produced by coloring procewe predict that there should be over a decade of length scales
dure, can be derived via the solution of diffusion equation forin which H-loops are still long-range correlated, while only
random walks with appropriate boundary conditions. short-range correlations remain in tRdoops.

To understand the fractal aspect of the sequences, it is Result(2) is sufficient to explain qualitatively correlations
convenient to concentrate on their uninterrupted homocolin proteinlike sequences, including the data shown in Fig. 2.
ored sections and on the points of connection between thenmndeed, according to our discussion, a proteinlike sequence
Our coloring procedurg(Fig. 1) introduces a separation can be thought of as an alternating successiomd-ofand
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P-stretches, with lengths of stretches taken independentling Egs.(4)—(6), is easy to solve: we writ& in terms of
from the Corresponding dlStrIbUth@(k) and Pp(k) This bilinear expansiorszznek)\nlr/jn(F) lr/,ﬂ(FO) over the eigen_
mathematical scheme is called a LeVy ﬂ|dh.ﬂ.] We con- functions ¢n Satisfying @2/6)A wn:)\nwn with boundary
clude that the long-range correlations in the primary secondition (5). Upon spherical integration in E¢6), all an-

quences of proteinlike copolymers are described by Levyyylar dependent harmonics vanish, and we arrive at
flight statistics. Furthermore, for the %2 behavior ofP(k),

the averaged block length diverges, and, therefore, the value 2 2 r
of D, in the power law regime is controlled by the longest Pu(k)=— > n(—l)”*lsin( m-r—*)
block, yieldingD ,~//, or a=1. This is true as long as both 3R™ro n=1
H- andP-loops remain in fractal regime. On the other hand, 22 nar) 2
when all loops cross-over to exponential distributid@, Xexr{ - _(_ 7
crosses over tee=1/2: 6 | R*
7, for 1</<0.01:N?P¢p 2 The distributionPp(k) can be derived similarly, except
D, =~ JV2 for />0.24N%P3¢ 2. (3)  that now we have to take care of the boundary condition at

the outer surface of the globule. To this end, we argue that
The cross-over region fdD , is very broad, it corresponds to this condition must be taken in the form
the situation in whichP-loops are already “large,” while .
H-loops are still “small.” Botha=1 anda=1/2 limits and ViG(r,k[ro)|,=r=0. (8
wide cross-over agree qualitatively well with computational i . ]
data, Fig. 2. This motivates more careful theory, in which!/ndeed, formally this condition ensures the constant density
instead of scaling estimaté®) and (3), the expressions in of monomer units throughout the globule for large values of

terms of infinite series, suitable for numerical calculation, isk: @ Well as breaking of correlations as soon as polymer
obtained. chain is “reflected” by a globular boundary. Physically, this

To develop full analytical theory, it is convenient to use Poundary condition reflects the fact that there is always a

the random walk terminology to describe parent conforma-Sticky layer” (or depletion layerformed self-consistently
tion. In this language, for instancBy (k) is the probability along fche internal surface_ of the globule dug to the effective
that the random walker enters a sphere of the ragifugnd ~ attraction of monomer units to the outer region where poly-

then arrives back to the boundafgr the first timeafter ~ Mer density is depleted and excluded volume effect is re-
“time” k. Recall that the statistical weight of all random duced. As long as we are not interested in the structure of

. . . > - surface layer of the globule, we can just replace this layer by
walk trajectories starting at the poing and arriving afterk effective boundary condition8). After calculations for

steps at the point, G(r k|r,), obeys the diffusion equation Po(K) we obtain

POOHTD) &\ o o+ k-, (@) o
—————=—AG(r Kr r—ro), 2¢i
dk 6 0 0 22R* o {nSII"I( {n R_R*
Po(k)=

3(R-R*)2%ryi=1 {n—sin{,cos¢,
2
e k], ©

R—-R*
S s _ where/(, satisfies,,=(1—R*/R)tan{,.
G(r.kIro)ljfi-r+=0. ®) Finally, to compute the dispersidd, , we note thau;u;
The probability distribution of the “first return times” in N EQ. (1) is the probability that both unitsandj are of the
terms of G is then given as the time-dependent flux of dif- H type, which happens if both are located inside fie

*

wherea? is the mean square length of one stée squared

size of one monomer unit along the chaio introduce the

condition of first return we have to say that the walker never % a?
X ex

touches the boundary, which is achieved by imposing the 5
boundary condition

fusing particles through the absorbing wall: region in the parental conformation. Thus,
8.2 0G 1 3 3 . . g
Pu(k)=| ¢ doo—= i (6) <uiuj>=va*d rfv*d roG(r,li—jllro)
r=R*
whered/dr means the component of gradient normal to the :1 2 - J oy @ 2 10
surface, integration is performed over the closed separating V 71=0 V* . '

surface, and the absolute value is written to avoid thinking

about the direction of the flux. The normalization Conditionwhere G(F,k||?0) is the Green function Satisfying E(ﬁ4)
JPu(k)dk=1 is guaranteed by the fact that all diffusing with boundary conditior8), ¢, and\,, are the correspond-
particles eventually leave through the surface. As regagds ing eigenfunctions and eigenvalues. Plugging this into Eq.
it should be taken within a distance of ordarfrom the (1), one arrives at the cumbersome looking expression for
separatindR* surface. The problem thus formulated, includ- D, which is easy to implement numerically; the result is
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plotted in Fig. 2 and shows virtually a perfect fit to the theory suggests that Levy-flight statistics, albeit with a
Monte Carlo datd13]. In fact, this fit may even be some- broader cross-over region, is expected even if parental con-
what fortuitous; indeed, along with diffusion equatio#),  formation is not maximally compact, but rather a globule
which is an approximation for the underlying bond fluctua-somewhat closer to thé-point. It becomes clear from our
tion model, we can also switch from summation to integra-model that segregation of globule into a hydrophobic core

tion in Eq. (1), yielding and a hydrophilic peel, which is the necessary condition for
w0 2 2 water solubility, does impose severe restrictions on the se-
D§=6/’2E 9 n~ @, (11) quence, and, therefore, must be manifested in certain corre-
’ n=1 | BR? lations.

However, we would like to emphasize once more that the
where ¢, satisfies the equation {y=tan,, an  correlations in the primary sequences obtained above apply
=[(£&R*/R*)cos¢R*IR*) —sin(&R /R P(1+£2)/£5, and  to designed synthetic copolymers rather than to real proteins.
the functiong is defined asg(x)=2[x—1+exp(—X)I*.  The chains in the core of real proteins do not obey Gaussian
[Note that the sum in Ed11) starts fromn=1 and does not  statistics(mainly due to the elements of secondary strugture
include the ground state, for which is a constant It is  therefore, deviations from randomness due to long-range cor-
easy to check that E¢11) does indeed have asymptotic yejations[14] and to regularityf 15,16 were found in protein
behavior in accord with Eq(3), including a broad cross-  sequences. Besides, the compact folding of molecules was
over; similarly, Eqs(7) and(9) agree with Eq(2). Numeri-  shown to favor regularity in unit sequences for small glob-
cally, Eq. (11) fits pretty well to the datdFig. 2, but, we  je5[16]. Nevertheless, identification of long-range correla-
repeat, best fit is achieved by the cumbersome discrete fofjons in protein sequences is an interesting task which prom-

mula. isses to shed light on the evolutionary criteria involved in the

In conclusion, we have shown that proteinlike copolymersgejection of proteins and the role of water solubility among
generated according to the coloring procedure proposed egfjem.

lier [1,2] exhibit long-range correlations in the primary se-
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